An intersection theorem for systems of sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An intersection theorem for systems of sets

Erdos and Rado defined a A-system, as a family in which every two members have the same intersection. Here we obtain a new upper bound on the maximum cardinality q ( n , q ) of an n-uniform family not containing any A-system of cardinality q. Namely, we prove that, for any a > 1 and q , there exists C = C(a, q ) such that, for any n ,

متن کامل

An intersection theorem for systems of finite sets

For nonnegative reals ω, ψ and natural t ≤ k ≤ (n + t − 1)/2, the maximum of ω A ∩ [n] k  + ψ A ∩  [n] n + t − 1 − k  among all t-intersecting set systems A ⊆ 2[n] is determined. © 2015 Elsevier B.V. All rights reserved.

متن کامل

An intersection theorem for weighted sets

A weight function ! : 2 → R¿0 from the set of all subsets of [n]={1; : : : ; n} to the nonnegative real numbers is called shift-monotone in {m+1; : : : ; n} if !({a1; : : : ; aj})¿!({b1; : : : ; bj}) holds for all {a1; : : : ; aj}; {b1; : : : ; bj}⊆ [n] with ai6bi; i = 1; : : : ; j, and if !(A)¿!(B) holds for all A; B⊆ [n] with A⊆B and B\A⊆{m + 1; : : : ; n}. A family F⊆ 2 is called intersectin...

متن کامل

An intersection theorem for four sets

Fix integers n, r ≥ 4 and let F denote a family of r-sets of an n-element set. Suppose that for every four distinct A,B,C,D ∈ F with |A∪B ∪C ∪D| ≤ 2r, we have A∩B ∩C ∩D 6= ∅. We prove that for n sufficiently large, |F| ≤ ( n−1 r−1 ) , with equality only if ⋂ F∈F F 6= ∅. This is closely related to a problem of Katona and a result of Frankl and Füredi [10], who proved a similar statement for thre...

متن کامل

The Complete Nontrivial-Intersection Theorem for Systems of Finite Sets

The theorem presented and proved in this paper can be viewed as an extension or improvement of our recent Complete Intersection Theorem [1] and may be called the Complete Nontrivial-Intersection Theorem. It goes considerably beyond the well-known Hilton Milner Theorem [10]. We put the result into the proper perspective with a brief sketch of the key steps in its development, beginning with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Structures and Algorithms

سال: 1996

ISSN: 1042-9832,1098-2418

DOI: 10.1002/(sici)1098-2418(199608/09)9:1/2<213::aid-rsa13>3.3.co;2-x